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Abstract: Accurate and prior identification of local severe storm systems in pre-convection environments
using geostationary satellite imagery measurements is a challenging task. Methodologies for “convective
initiation” identification have already been developed and explored for operational nowcasting applications;
however, warning of such convective systems using the new generation of geostationary satellite imagery
measurements in pre-convection environments is still not well studied. In this investigation, the Random
Forest (RF) machine learning algorithm is used to develop a predictive statistical model for tracking and
identifying three different types of convective storm systems (weak, medium, and severe) over East Asia
by combining spatially-temporally collocated Himawari-8 (H08) measurements and Numerical Weather
Prediction (NWP) forecast data. The Global Precipitation Measurement (GPM) gridded product is used
as a benchmark to train the predictive models based on a sample-balance technique which can adjust or
balance the samples of three different convection types to avoid over-fitting any type of dataset. Variables
such as brightness temperatures (BTs) from H08 water vapor absorption bands (6.2 µm, 6.9 µm and 7.3 µm)
and Total Precipitable Water (TPW) from NWP show relatively high ranks in the predictive model training.
These sensitive variables are closely associated with convectively dominated precipitation areas, indicating
the importance of predictors from both H08 and NWP data. The final optimal RF model is achieved with
an accuracy of 0.79 for classification of all convective storm systems, while the Probability of Detection (POD)
of this model for severe and medium convections can reach 0.66 and 0.70, respectively. Two typical sudden
convective storm cases in the warm season of 2018 tracked by this algorithm are described, and results
indicate that the H08 and NWP based statistical model using the RF algorithm is capable of capturing local
burst convective storm systems about 1–2 h earlier than the outbreak of heavy rainfall.

Keywords: convective storm; geostationary satellite; numerical weather prediction; nowcasting;
random forests

1. Introduction

Severe convective weather systems are usually accompanied by short-lived heavy rainfall,
thunderstorms, strong winds, tornadoes, and/or hailstorms on the order of a dozen to three hundred

Remote Sens. 2019, 11, 383; doi:10.3390/rs11040383 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-1519-5069
http://dx.doi.org/10.3390/rs11040383
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/4/383?type=check_update&version=3


Remote Sens. 2019, 11, 383 2 of 20

kilometers horizontally [1]. The emergence or outbreak of convective weather systems often causes
significant economic losses. Turbulence and high-altitude ice formation caused by convective weather
systems also seriously threaten the aviation safety [2]. Traditionally, operational numerical weather
prediction (NWP) model data is used to predict the occurrence of severe convective weather systems [3].
However, for some isolated and sudden local convective storm systems with short lifetimes, it is still
hard to accurately predict their occurrence, development, and movement based on the current NWP
models [4]. However, severe convective storm systems can be well tracked or observed by geostationary
(GEO) weather satellites and/or ground-based weather radars in their initial stages [5], which are
always adopted as convective initiation (CI) products in nowcasting applications.

Some previous studies [6,7] have already pointed out that the GEO orbit weather satellites can
well capture sudden convective weather systems with a high spatiotemporal resolution. Normally,
based on the GEO satellite observations, features and temporal variations at the cloud top from the
infrared (IR) brightness temperature (BT or TBB, temperature of black body) observations are used to
track and identify developing convective storm systems [6]. Another significant benefit of the IR-based
identification method is the ability to perform a unified and continuous recognition of convective
storm systems from day to night, without the need to rely on the reflected sunlight [6,8]. However,
due to remarkable seasonal, regional, or sensor specification differences, there is no unified IR BT
threshold for tracking and identifying potential convective cloud clustering [9]. As early as 1980,
Maddox first used 241 K for IR window band as a criterion to identify mesoscale convective cloud
systems (MCS) [10]. In the most recent decade, with the rapid improvement of space-based imaging
sensors, Laing et al. [11] found that the presence of high altitude cirrus clouds can significantly impact
the accuracy of convective storm system identification. Thus they proposed a new marker of 233 K (BT
at 10.5–12.5 µm band from the European GEO meteorological Satellite-7, and Meteosat-7) for judging
convection. Recently, it was found that MCS lifetimes were impacted by the use of a lower IR threshold
identification method. [12]. To further improve the accuracy of the single IR band algorithm for CI
detection, the BT gradient of IR window band and tropopause temperature from NWP data were used
to further analyze convective storm events [13]. Furthermore, Wang [14] found that the water vapor
band plays an important role in cloud classification during nighttime hours. When combining the IR
window band and the water vapor absorption band, the accuracy of convection classification is higher
than that using only one band [14].

In addition to the temporal variation of BT at the top of cloud deck, some BT differences
(BTDs) between different spectral bands were also used for detecting convective storm systems [15].
With the vigorous and rapid development of convective systems, a strong updraft will transport
water vapor above convective cloud clusters and break through the top of the troposphere into
the lower stratosphere [16]. Ackerman [17] found that when tropospheric water vapor enters the
stratosphere, the BTDs at the top of cloud between the water vapor (high BT) and IR window band
(low BT) are negative; therefore, he used the BTD between water vaper and IR window band to detect
convection systems.

In recent years, China Meteorological Administration (CMA), Japan Meteorological Agency
(JMA), and U.S. National Oceanic and Atmospheric Administration (NOAA) have already
successfully launched their own new-generation geostationary weather satellites in succession since
2014. The new generation GEO weather satellites, such as Chinese FengYun-4 (FY-4) series [8],
Japanese Himawari-8/9 [18], and U.S. Geostationary Operational Environmental Satellites-R (GOES-R)
series [19], carrying advanced sensors, provide new opportunities for detecting and tracking severe
convective storm systems. New measurements can help to further understand the occurrence and
development of convection from a satellite perspective [20]. It is worthy to note that the Himawari-8
was successfully launched on 7 October 2014. It carries a 16-band Visible (VIS) and IR Advanced
Himawari Imager (AHI) with spatial resolutions from 0.5 km (VIS) to 2.0 km (IR) and a full-disk
observation within a 10-minute time interval (http://www.jma-net.go.jp/msc/en/).

http://www.jma-net.go.jp/msc/en/
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With new measurements from the advanced GEO space-based sensors, some advanced
machine learning (ML) techniques, such as random forests (RF), support vector machines (SVM),
artificial neural network (ANN), deep learning (DL), etc. that were successfully used to solve
non-linear weather-related issues [21,22] and can be used to better understand convective storms.
Williams [21] examined the specific problem of combining NWP model, radar, and satellite for
forecasting thunderstorm initiation in a one-hour timeframe [21]. These innovative applications
are benefited from the rapid development of ML frameworks, such as scikit-learn (http://scikit-learn.
org/), Theano (http://deeplearning.net/software/theano/), TensorFlow (http://www.tensorfly.cn/),
and PyTorch (https://pytorch.org), which are easy to be implemented for statistical model training
and predicting. As one of many accurate and high-efficiency ML algorithms, the Random Forest (RF)
has been successfully and extensively utilized in weather and remote sensing applications [23]; it is
capable of capturing non-linear relationship between predictors and predictands.

In this study, based on H08/AHI data, the RF learning algorithm is used to develop a near
real-time (NRT) tracking and warning predictive model for convective storm systems. The predictive
model can capture the sudden local convective systems from a newly-formed cell using high
spatiotemporal resolution H08/AHI IR observations, for example, to predict the occurrence and
the intensity of convective storm systems using the variables from the spatially-temporally matched
H08/AHI observations and GFS (Global Forecast System) NWP data [24]. Unlike the traditional
method, some important parameters, such as total precipitable water (TPW), from NWP data
are introduced here to provide atmospheric environmental field information for better identifying
convective storm systems. By using AHI and the real-time GFS NWP data in the warning algorithm,
the convective storm system tracking and identify model called Storm Warning In Pre-convective
Environment (SWIPE) has been developed for nowcasting applications [25].

Section 2 introduces the new GEO and GFS NWP data. Section 3 presents the convective-tracking
algorithm and collected dataset. Section 4 elaborates the RF classification algorithm, the SWIPE
prediction model and its evaluation. Two typical convective storm cases tracked by the SWIPE model
are introduced and discussed in Section 5. Finally, Section 6 provides a summary and future work.

2. Data

Seven months of continuous H08 and GFS NWP data (from April to October 2016) are used here
to build a robust and efficient convective storm prediction model (SWIPE) with RF algorithm. This
period covers the typical summer precipitation season over China. Himawari-8, the next-generation
geostationary satellite belonging to the Japan Meteorological Agency (JMA, http://www.jma-net.
go.jp/msc/en/), was successfully launched into geosynchronous orbit and centered around 140.7◦E
on 7 October 2014. The AHI onboard H08 has 16 bands including 4 VIS, 2 near-IR (NIR), and 10 IR
bands with central wavelengths ranging from 0.47 to 13.3 µm. It routinely operates a full disk and
five sub-region scanning modes within a 10 min (or 2.5 min for a regionally rapid scanning mode)
interval with spatial resolutions 0.5 km and 1 km for VIS bands, and 2 km for NIR and IR bands.
As a primary H08 data user in China, the China Meteorological Administration (CMA) can obtain
the H08/AHI Level-1B data with geolocation and radiometric calibration from JMA in NRT for
now-casting applications [25–27].

In addition to the radiances at the top of atmosphere observed by H08/AHI, some other
important atmospheric environment parameters are also used. The NWP model data, containing
global three-dimension (3D) atmospheric environmental parameters such as temperature, humidity,
pressure, wind speed, etc., with a horizontal spatial resolution of 0.5◦ × 0.5◦ and 26 vertical layers
from 1000 hPa to 10 hPa, are routinely generated by the National Centers for Environmental Prediction
(NCEP) GFS, a global NWP system containing a global computer model and variational analysis run
by NOAA National Weather Service (NWS). A linear interpolation technique is used here to match
H08/AHI observations and GFS NWP data, and NWP data are mapped to observations. Based on the
NWP data, some environmental parameters (such as TPW, K-Index and Lifted Index) are chosen to
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train the convective storm prediction model, which are likely to be closely associated with the severe
convective weather events [28].

Besides the two datasets mentioned above, we also use the Global Precipitation Measurement
(GPM) level three gridded Integrated Multi-satellite Retrievals for GPM (IMERG) V04A version
data [29] for reliable training and validation data in this study. The GPM is a joint mission between
NASA and JAXA to make frequent observations of global precipitation. It is an important part of
NASA’s Precipitation Measurement Missions (PMM) program and works with a satellite constellation
to provide full global coverage. As the successor to Tropical Rainfall Measuring Mission (TRMM)
mission, the GPM can provide more frequent and accurate observations of global precipitation. As a key
sensor, the microwave imager capturs the precipitation intensity and horizontal morphology, while the
dual-band precipitation radar provides three-dimensional structure of precipitation aggregates.
IMERG is a merged precipitation product based on GPM observations and other satellite microwave
precipitation estimates [30], with a half an hour interval and a spatial resolution of 0.1◦ × 0.1◦. It can
cover the global area between the latitudes of 60◦N and 60◦S [31]. This product has been well validated
using ground-based gauges or surface based radars [30]. Therefore, the GPM IMERG product is used
as the truth for training the SWIPE prediction model based on its high quality.

3. Convective-Tracking Method and Dataset

3.1. Spatial Distributions

In the current study, we focus on the sudden local convective storms observed over China and
nearby regions (a domain bracketed from 70◦E to 140◦E and 15◦N to 60◦N, see Figure 1), which can be
fully covered by H08/AHI data. This region has complex spatial and temporal structures. It covers
both subtropical and mid-latitude regions, and its rainfall is often concentrated on long strips stretching
for thousands of kilometers, affecting China, Japan, South Korea and the surrounding seas. During
the East Asian summer monsoon, the impact of floods on human life and the economy is large,
as finer seasonal space-time structures combined with narrow rivers are more sensitive to inter-annual
variations [32]. Note that this area of interest includes some typical climate belts, complex atmospheric
circulation, and various terrain, such as the tropical monsoon region, the subtropical monsoon climate
region, the Qinghai-Tibet plateau climate region, etc. In summertime, the warm and humid air flow
from the tropical ocean provides sufficient water and seasonal precipitation to the North of the area,
resulting in a large number of strong convective systems, which is conducive to the establishment of
a rich data set of strong convection systems [33].

In this study, the rank of convective storm system is divided into three types on the basis of
amount of quantitative precipitation, including (1) slight convective storm system with the maximum
rain rate less than 2.5 mm/h, (2) medium-strength convection storm system with the maximum
rain rate from 2.5 to 16 mm/h, and (3) severe convective storm system with the maximum rain rate
exceeding 16 mm/h. The two instantaneous rain rates of 16 and 2.5 mm/h stem from a common
classification criterion of heavy rainfall over China by the National Meteorological Center (NMC) of
CMA and a standard definition of moderate rain by the American Meteorological Society (AMS) [34].
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Figure 1. Spatial distributions of three typical convective storm systems from April to October of
2016. Gray, orange, and red solid circles respectively represent slight (or none), medium, and severe
convective storm systems.

3.2. Convective-Tracking

Cloud top IR BT variations from two successive images observed by a GEO satellite are used to
track convective storm system development, as introduced in Section 1. In this study, in order to better
identify developing convective initiation systems, we screen cloud clusters using an IR BT threshold
below 273 K at the 10.4 µm band observed by H08/AHI. This IR threshold can help us to further
identify potential cloud clusters, which might grow into strong convection systems. After screening
warm cloud cluster, a classical area-overlapped method [35] is applied to track the cloud cluster
movement based on two consecutive H08/AHI observation data within a 10 min interval. For the
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tracked cloud system objects, we use the equations (1) and (2) to calculate the two consecutive cloud
top cool rates (R) at the 10.4 µm band as follows:

R1 =
min(BTA2,1,BTA2,2,...BTA2,n)−min(BTA1,1,BTA1,2,...BTA1,n)

t2−t1
, (1)

R2 =
min(BTA3,1,BTA3,2,...BTA3,n)−min(BTA2,1,BTA2,2,...BTA2,n)

t3−t2
, (2)

where the symbol min represents the minimum function. A1, 2, 3 and t1, 2, 3 mean the tracked and
overlapped convective storm cloud cluster area and observation time, respectively. The numbers from
one to n denote the pixel number in the cloud cluster area, A1, A2, or A3. If both the cooling rates of
R1 and R2 reach −16 K/hour or lower [36], the related cloud system will be marked or considered
to be a potential or developing convective cloud cluster. To better track sudden convective storm
systems and ignore large-scale convective systems (they are always closely associated with frontal
cloud systems) [37], the SWIPE model only identifies the convective cloud cluster areas with a total
pixel number ranging from 10 to 80,000 (maximum area is about 600 km × 600 km). Thus, three
consecutive observation BT images should be used to compute two continuous cloud top cooling rates,
which could help the algorithm to better identify the rapidly developing convective cloud clusters.

Figure 2 is an example of this convective-tracking method using three continuous BT images within
a 10 min observation interval. It shows a real case of a tracked convective storm system at 19:30 UTC on
05 July 2016 in Guangdong province of China using H08/AHI observations. The small colorful sub-figures
in the left panel column represent the 10.4 µm BT images at 19:10, 19:20, and 19:30 UTC, respectively. For this
case, it can be seen that the two continuous cloud top cooling rates are less than−16 K/h, and the BT at
the coldest part of convective cluster at 19:30 UTC is lower than 200 K. This severe local convective storm
system ultimately generated a maximum rain rate of 26.4 mm/h.Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 21 
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Figure 2. A real case of tracked convective storm system at 19:30 UTC on 05 July 2016 in Guangdong
province of China based on H08/AHI observations. The first small sub-figure at the upper-left corner is the
grayscale 10.4 µm BT image with coast line (yellow solid line). The other three small colorful sub-figures at
the left panel represent 10.4 µm BT images at 19:10, 19:20, and 19:30 UTC, respectively. The colorful area in
right panel represents the pixels of H08/AHI with BT<238 K at 19:30 UTC on 05 July 2016.
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3.3. Datasets

As mentioned before, the cooling rate of the IR BTs with spatial resolution of 2 km at the top
of cloud cluster observed by H08/AHI, is used to identify the rapidly developing convective storm
cluster. After this step, a spatial and temporal matching technique is used to collocate H08/AHI
and GPM IMERG data. The GPM IMERG data right after the time when the SWIPE recognizes
a convective cloud is used to match the H08/AHI data. For example, if SWIPE recognizes a convective
cloud at 07:10 UTC, then the GPM data of 07:30 UTC is used to determine the rain rate of this cloud
cluster. A maximum rain rate (from GPM IMERG) from the 10% coldest pixels of potential convective
storm cluster is marked as its final rain rate. A temporal linear interpolation technique is also used
here to match NWP data (3 h interval) with the collocated H08/AHI and GPM IMERG data. Based
on the collocated dataset, all the samples of convective storm systems were tracked and identified
from April to October 2016. During this period, a total of 88,351 convective storm events were
successfully tracked using the aforementioned method, including 85,102 slight (or none), 2540 medium,
and 709 severe convective storm systems. Table 1 lists the numbers of three typical convective storm
systems tracked from April to October 2016. Similar to Table 1, Figure 1 shows the spatial distributions
of three typical convective storm systems during this period. We find significant geographical and
seasonal characteristics of convective storm systems over this area. The most frequent occurrences
of convective storm systems are presented in July (14,608), August (16,455), and September (16,994).
The monthly proportion, reaching 4.17%, of severe and medium storm systems was the highest in
October. In this month, 106 severe and 396 medium convective storm systems were found in all
of 12,040 potential convective systems. In Figure 1, we also find that the geographic area of strong
convection gradually moves North from April to August. Contrarily, it will move toward south at
the beginning of September again [38]. It is well known that the seasonal movement pattern of strong
convection is closely associated with the Intertropical Convergence Zone (ITCZ) and monsoon [33].

Table 1. Monthly total numbers of three typical convective storm systems in the area of interest from
April to October 2016.

Month Severe Medium Slight (or None)

April 72 82 5426
May 133 266 11,412
June 76 289 10,492
July 78 511 14,019

August 123 497 15,835
September 121 493 16,380

October 106 396 11,538

4. Statistical Prediction Model

4.1. RF Classification Model Training

Random Forests as an important ensemble and advanced ML algorithm is widely used in data
classification and nonparametric regression [39,40]. Here, it is used to build a connection between
convective storm system and satellite observations, which can predict the occurrence and intensity of
convection. For a detailed introduction to the RF algorithm, please refer to the Appendix A at the end
of this paper.

For validating the performance of the RF algorithm based SWIPE model, the data on the 2nd
and 15th days of each month are used as independent samples (mentioned in Section 3.3 above) for
testing and evaluating the SWIPE model. The test data sets include 47 severe convective systems,
150 medium convective systems and 5498 weak convective systems. These independent data are
not included in the training, and the remaining data from April to October of 2016 are used as
a training dataset to generating an effective RF classification model — SWIPE. Based on the tracked
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convective storm system dataset mentioned in Section 3.3, a total of 83 predictive factors (see Table 2)
from H08/AHI observations and spatiotemporally matched NWP data, are used to train the SWIPE
model for identifying three different types of convective storm systems, which is one of the key steps
for the SWIPE model. According to the previous studies for identifying and tracking convective
storm systems [41], the predictors from H08/AHI mainly include the BTs observed by water vapor
absorption and IR split window bands. Related studies by Reed et al [42] also indicate that the ECMWF
(European Centre for Medium-range Weather Forecasts) analysis data is likely to be able to capture the
synoptic-scale and mesoscale features of convective environments. These weather forecast indices can
provide a good description of the thermal (K Index), dynamic (CAPE, CIN, Lifted Index, EBS) and
moisture (TPW) characteristics of the atmospheric environment. Details of predictors from GFS NWP
data used here are listed in Table 2 [43,44].

Table 2. Predictor variables for the RF classification model training and predicting.

Classification Variable Unit

Satellite
measurements

T6.2-10.4, T6.9-10.4, T7.3-10.4, T8.6-10.4, T9.6-10.4, T10.4, T11.2-10.4, T12.3-10.4,
∆T13.3-10.4, ∆T8.6-11.2, ∆T11.2-12.3, ∆T3.9-11.2, ∆T3.9-7.3

K

Area (pixel number of convective storm system)

GFS NWP

K-Index ◦C
CAPE (Convection Available Potential Energy) J·kg−1

CIN (Convective Inhibition) J·kg−1

LI (Lifted Index)
EBS (Effective Bulk Shear) m·s−1

TPW (Total Precipitable Water) mm
θse850/925 (Pseudo-equivalent potential temperature at 850/925 hPa) K

PV (Potential Vorticity)

Div925/850/10 (Convergence at 925 and 850 hPa/10m) s−1

MR850/925 (Mixing Ratio at 850/925 hPa) g·kg−1

Note that the total numbers of three different convective systems will affect the final model
training and prediction. Previous studies have already pointed out that the sample ratio of different
types in the dataset can significantly impact the final accuracy of the prediction model [22,24]. For the
original dataset, the natural ratio between severe, medium, and weak convections is about 1:3.6:120,
which is also referred to as the original dataset or Scenario-0. When the weak convective systems
in the model training are too much, the final prediction will be biased towards this excessive type.
In order to further improve the prediction accuracy, the numbers of medium convective systems and
weak convective systems are reduced. A variety of scale models were tried to ensure an optimal
model. The ratios are adjusted to 1:1:1, 1:3.6:3.6 and 1:3.6:7.2, for three scenarios that are marked
as Scenario-1, Scenario-2, and Scenario-3, respectively. This method for adjusting proportions of
different types in the dataset is known as the sample-balance technique [45]. By including the original
sample scenario, Table 3 shows the numbers of weak, medium and severe convections of four typical
sample datasets under three different scenarios as described above. Previous studies have shown
that using the best performing samples can increase the accuracy of prediction by more than 20% [24].
Other studies [45,46] have already employed the sample-balance technique to randomly cut back
samples of the majority class to equate the numbers of minority and majority class samples in the
training dataset. The use of original majority class samples likely leads to a poor performance for
predicting minority or majority classes. Thus, as mentioned above, we use this sample-balance
technique to improve the probability of detection of medium and severe convective storm samples
(minority class).
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Table 3. Numbers of weak, medium and severe convections of four typical sample datasets under
different scenarios.

Scenario-1 Scenario-2 Scenario-3 Scenario-0
(Original)

Weak 662 2388 4776 79,549
Medium 662 2388 2388 2388
Severe 662 662 662 662

Proportion 1:1:1 1:3.6:3.6 1:3.6:7.2 1:3.6:120

4.2. SWIPE Model Flowchart

Figure 3 shows the general flowchart of the SWIPE model training and predicting based on the
RF algorithm. From this figure, a unified strategy from tracking to identifying is used to classify
convective storm system into three categories. It roughly contains three key steps: First, it tracks
potential convective cloud clusters using three continuous imageries from H08, and then collocates the
H08/AHI and GFS NWP data with GPM IMERG rain rate data (benchmark) in a same spatiotemporal
scale. The second step is to divide the convective storm system dataset into three different types
(weak, medium, and severe). A classical sample-balance technique is used here to further improve the
performance of models. Finally, the RF algorithm is used to train and develop a convection intensity
classification statistical model - SWIPE.

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 21 

 

Proportion 1:1:1 1:3.6:3.6 1:3.6:7.2 1:3.6:120 

4.2. SWIPE model flowchart 298 
Figure 3 shows the general flowchart of the SWIPE model training and predicting based on the 299 

RF algorithm. From this figure, a unified strategy from tracking to identifying is used to classify 300 
convective storm system into three categories. It roughly contains three key steps: First, it tracks 301 
potential convective cloud clusters using three continuous imageries from H08, and then collocates 302 
the H08/AHI and GFS NWP data with GPM IMERG rain rate data (benchmark) in a same 303 
spatiotemporal scale. The second step is to divide the convective storm system dataset into three 304 
different types (weak, medium, and severe). A classical sample-balance technique is used here to 305 
further improve the performance of models. Finally, the RF algorithm is used to train and develop a 306 
convection intensity classification statistical model - SWIPE. 307 

 308 

Figure 3. The flow chart of SWIPE model training and predicting based on RF algorithm. It contains 309 
three steps: First, it tracks potential convective cloud clusters. The second step is to divide the 310 
convective storm system dataset into three different types (weak, medium, and severe). Finally, the 311 
RF algorithm is used to train and develop a convection intensity classification statistical model — 312 
SWIPE. ∆T represents the cloud top cooling rate. 313 

4.3. SWIPE model evaluation 314 
To better optimize the final RF based SWIPE prediction model, the model parameters are tuned 315 

iteratively in the SWIPE model training, including the number of trees in the forest (n_estimators), 316 
maximum depth of the trees (max_depth), and random split predictor variables (max_features). 317 
Figure 4 shows the effect of these parameters on the out-of-box (OOB) score. It indicates that OOB 318 
scores (about 0.96) of all the models hardly change with the variation of the parameters, implying 319 
good fitting RF based SWIPE prediction models or low sensitivity of the SWIPE model to parameters. 320 
We use the SWIPE model with the n_estimators ranges from 20 to 1000 in this investigation, which is 321 

Figure 3. The flow chart of SWIPE model training and predicting based on RF algorithm. It contains
three steps: First, it tracks potential convective cloud clusters. The second step is to divide the
convective storm system dataset into three different types (weak, medium, and severe). Finally, the RF
algorithm is used to train and develop a convection intensity classification statistical model — SWIPE.
∆T represents the cloud top cooling rate.

4.3. SWIPE Model Evaluation

To better optimize the final RF based SWIPE prediction model, the model parameters are tuned
iteratively in the SWIPE model training, including the number of trees in the forest (n_estimators),
maximum depth of the trees (max_depth), and random split predictor variables (max_features).
Figure 4 shows the effect of these parameters on the out-of-box (OOB) score. It indicates that OOB
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scores (about 0.96) of all the models hardly change with the variation of the parameters, implying
good fitting RF based SWIPE prediction models or low sensitivity of the SWIPE model to parameters.
We use the SWIPE model with the n_estimators ranges from 20 to 1000 in this investigation, which is
likely to lead to the stable variation of OOB score in Figure 4.
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Figure 4. Effects of total number of trees in the forest (n_estimators), maximum depth of the tree
(max_depth), and random split predictor variables (max_features = 7 (upper left), 8 (upper right),
9 (middle left), 10 (middle right), and 11 (lower left)) on OOB scores for the RF classification models of
convective storm system.

Generally, some common and important scores must be calculated to evaluate the performance of
a prediction model based on the classification confusion matrix. The following ratings in a contingency
table are used to access predicted results [24,47] (see Table 4).

Probability of Detection, POD = A/(A + B). (3)

False-Alarm Ratio, FAR = C/(A + C). (4)

Critical Success Index, CSI = A/(A + B + C). (5)

Hit Rate, HR = (A + D)/(A + B + C + D). (6)

To further illuminate the importance of NWP model variables, a new prediction model consisting
of only 41 satellite variables is established for comparison purposes, which is marked as Scenario-S
(using the same statistical model and the training dataset as Scenario-1, but only satellite parameters
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are used as predictors). In this study, in spite of false-alarm detection, we hope the nominally optimal
prediction model is able to capture as many severe convective storm samples as possible (meaning
a relatively higher POD score). Based on an extra-large amount of training samples for different
model parameter tuning, the RF classification model is finally decided using dataset of Scenario-1
with n_estimators = 100, max_depth = 5, and max_features = 10 as the optimal prediction model.
Table 5 shows the best performance metrics of convection classification using four independent
RF classification models based on four different scenarios of Scenario-1/2/3/0 described above.
The specific model parameters are also listed in Table 5 below. From this table, the optimal RF
model under Scenario-1 can generate the highest POD scores of 0.66 and 0.70 for severe and medium
convective storm cases, respectively. While this model’s CSI and HR scores decrease to about 0.30
(severe = 0.25 and medium = 0.39) and 0.79, it can effectively capture severe and medium convective
storm cases in operational nowcasting application with relatively high POD scores, and is therefore
selected as final SWIPE model for research and applications.

Table 4. Contingency table.

Measured Value

1 0

Expected value 1 A C
0 B D

Table 5. On the best performance metrics of convection classification using four independent RF
classification models based on the four different scenarios of Scenario-1/2/3/0 and Scenario-S.

POD FAR CSI HR

Scenario-1
Severe 0.66 0.71 0.25

0.79
Medium 0.70 0.91 0.39

Scenario-2
Severe 0.34 0.20 0.31

0.82
Medium 0.90 0.88 0.43

Scenario-3
Severe 0.32 0.17 0.30

0.90
Medium 0.79 0.83 0.40

Scenario-0
Severe 0.30 0.18 0.28

0.97
Medium 0.11 0.47 0.10

Scenario-S
Severe 0.69 0.69 0.27

0.79
Medium 0.62 0.92 0.08

Note: Scenario-1 (n_estimators = 100, max_depth = 5, and max_features = 10); Scenario-2 (n_estimators = 50,
max_depth = 15, and max_features = 10); Scenario-3 (n_estimators = 50, max_depth = 10, and max_features = 8);
Scenario-0 (n_estimators = 200, max_depth = 10, and max_features = 8); and Scenario-S (n_estimators = 100,
max_depth = 5, and max_features = 10)

4.4. Relative Importance Predictors

Random forests classification algorithms can assess the importance of each predictor [39].
In theory, the importance scores (IS) represent the weighting coefficients of every predictor for fitting
a RF prediction model. It can be used to evaluate a quantitative contribution of every predictor for the
fitting model, which is used to improve RF model training and selection of predictors.

Table 6 shows the ranking results of the IS of 83 predictors for training the optimal RF
prediction model using the independent dataset of Scenario-1 with n_estimators = 100, max_depth
= 5, and max_features = 10 (Scenario-1). “max”, and “min” represent the 10% of maximum and the
minimum pixels, respectively, in the tracked convective storm cloud cluster. Also “mean” represents
the averaged value of all the pixels in the tracked convective storm cloud cluster. From this table,
we find that most of the top ranking factors are satellite observation variables, such as T6.2, T6.9-10.4

and T9.6. It is worth noting that the water vapor bands (6.2 µm, 6.9 µm and 7.3 µm) with a relatively
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high rank are closely associated with convectively dominated precipitation areas [24,28], which always
exhibit a large cloud depth and a higher cloud top at the troposphere. This high correlation is also due
to the convective storm samples tracked in this study, which are finally marked and determined using
GPM IMERG rain rate product introduced in Section 3.

However, we also find some important variables with high ranks from real-time NWP data in
Table 6, such as CIN, θ, MR925 and TPW, indicating a strong connection between atmospheric stability,
air moisture content and the occurrence of sudden convective storm [28]. When compared with
high-ranking variables, we still find some low ranking variables (means low weight) from real-time
NWP data in Table 6, such as EBS and CAPE index. This implies a weak connection between the
sudden convective storm and the spatiotemporally matched characteristics of EBS and CAPE index.

From the results of Scenario-S at the last line in Table 5, it is found that the POD and FAR of severe
convective storms of Scenario-S are slightly improved but the POD and CSI (weaken from 0.39 to 0.08)
of medium convective storms are significantly decreased. However, Table 3 has shown that the total
number of medium convective storms is greater than the total number of strong convective storms
in nature. Therefore, the use of NWP variables can noticeably improve the prediction of convective
storms, especially for medium cases. This finding also indicates the importance of the variables from
real-time NWP data for the SWIPE model.

Table 6. Importance scores of predictor variables of SWIPE model and their corresponding rankings
(Scenario-1, n_estimators = 100, max_dept = 5, and max_features = 10) “max”, and “min” represent the
10% of maximum and the minimum pixels, respectively, in the tracked convective storm cloud cluster.
“mean” represents the averaged value of all the pixels in the tracked convective storm cloud cluster.

Classification Variable Score Ranking Variable Score Ranking

Satellite

∆T 6.2− 10.4 max = 0.148 1 ∆T 8.6− 11.2 max = 0.0056 27

∆T 9.6− 10.4 max = 0.107 2 ∆T 6.9− 10.4 min = 0.0055 28

∆T 6.9− 10.4 max = 0.1061 3 ∆T 8.6− 11.2 min = 0.0053 29

∆T 7.3− 10.4 max = 0.0849 4 ∆T 13.2− 10.4 min = 0.0051 31

T 10.4 min = 0.0656 5 ∆T 10.4 10per warm = 0.005 32

Area = 0.0638 6 ∆T 11.2− 10.4 min = 0.0045 34

T 10.4 mean = 0.0438 7 ∆T 6.2− 10.4 min = 0.0038 35

∆T 13.2− 10.4 max = 0.0417 8 ∆T 11.2− 12.3 max = 0.0035 38

∆T 12.3− 10.4 max = 0.0243 9 ∆T 12.3− 10.4 mean = 0.0033 40

∆T 7.3− 10.4 mean = 0.0202 10 ∆T 7.3− 10.4 min = 0.0032 41

∆T 11.2− 12.3 min = 0.0177 11 ∆T 3.9− 11.2 min = 0.003 43

∆T 8.6− 10.4 max = 0.0155 12 ∆T 11.2− 10.4 max = 0.0029 44

∆T 6.9− 10.4 mean = 0.0127 13 ∆T 3.9− 11.2 max = 0.0026 49

∆T 6.2− 10.4 mean = 0.0126 14 ∆T 3.9− 7.3 mean = 0.0025 53

∆T 12.3− 10.4 min = 0.011 15 ∆T 9.6− 10.4 min = 0.0023 55

T 10.4 max = 0.0083 18 ∆T 8.6− 10.4 mean = 0.0017 65

∆T 8.6− 10.4 min = 0.0071 21 ∆T 8.6− 11.2 mean = 0.0016 66

∆T 3.9− 7.3 min = 0.0066 22 ∆T 11.2− 10.4 mean = 0.0015 71

∆T 9.6− 10.4 mean = 0.0064 24 ∆T 3.9− 11.2 mean = 0.0012 76

∆T 13.2− 10.4 mean = 0.0059 26 ∆T 3.9− 7.3 max = 0.0011 77

∆T 11.2− 12.3 mean = 0.0009 78
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Table 6. Cont.

Classification Variable Score Ranking Variable Score Ranking

GFS

CIN min = 0.0104 16 Li min = 0.0021 57

θ 925 min = 0.0094 17 PV min = 0.002 58

MR 925 min = 0.0078 19 K-Index max = 0.002 59

TPW min = 0.0075 20 Div 10 mean = 0.0019 60

Div 10 max = 0.0065 23 K-Index mean = 0.0018 61

MR 850 min = 0.0063 25 Div 850 mean = 0.0018 62

Div 10 min = 0.0053 30 MR 925 max = 0.0018 63

Li max = 0.0049 33 MR 925 mean = 0.0017 64

CIN max = 0.0037 36 EBS max = 0.0015 67

PV max = 0.0037 37 PV mean = 0.0015 68

θ 850 min = 0.0035 39 TPW mean = 0.0015 69

Div 850 max = 0.0032 42 θ 850 max = 0.0015 70

θ 850 mean = 0.0028 45 CAPE mean = 0.0014 72

K-Index min = 0.0028 46 θ 925 max = 0.0014 73

Div 925 min = 0.0028 47 CIN mean = 0.0012 74

TPW max = 0.0027 48 Div 925 mean = 0.0012 75

Li mean = 0.0026 50 MR 850 max = 0.0008 79

MR 850 mean = 0.0025 51 EBS mean = 0.0007 80

Div 925 max = 0.0025 52 EBS min = 0.0007 81

Div 850 min = 0.0023 54 CAPE max = 0.0006 82

θ 925 mean = 0.0021 56 CAPE min = 0.0005 83

5. Case Studies

After determining a nominally optimal SWIPE prediction model, we have deployed it to provide
sudden convective storm tracking and warning using H08/AHI data in NRT since 1 April 2018 at
NSMC/CMA. For the H08/AHI data within a 10 min interval and 2 km spatial resolution, the averaged
time cost of this SWIPE algorithm for tracking and warning sudden local convective storms over the
East Asian area mentioned before is about 4 minutes, which can meet the latency requirement for
operational nowcasting applications. Two typical sudden local convective storm cases tracked by the
SWIPE are illustrated in detail as follows for demonstration purposes.

5.1. Case-1 at 07:00 UTC on 23 April 2018

The NRT SWIPE processing system successfully captured a medium sudden local convective
storm case at 07:00 UTC (Beijing time 15:00) on 23 April 2018 in the Hainan province of China.
This island is one of the southernmost islands of China with a mean latitude of 19◦N, which has
a typical tropical monsoon climate and tropical marine climate [33]. It is not surprising that this
area often suffers from the attack of severe convective storm weather systems, in particular in the
summertime. In addition, we also find many convective storm samples tracked by SWIPE from
April to October in Figure 1. For precipitation, the ground station test results are the most accurate.
The precipitation products are tested with the results of the ground test as the true value [16,38].

This convective storm case lasted about 3 hours. Its appearance and development is shown in
Figure 5. From this figure, the SWIPE model initially marked a baby or newborn local convective
storm system on the western side of Hainan Island at 07:00 UTC. This recognition result by the SWIPE
algorithm disappeared immediately at 07:10 UTC (not shown here) due to the stable development of
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convective cloud cluster. According to the continuous records of the 21 ground-based rainfall gauge
observations within 1 min intervals, the precipitation induced by this medium convective storm system
initially occurs at 08:23 UTC in the Northern part of the island. In contrast, the H08/AHI can only take
a picture for this convective storm system at 08:30 UTC. Therefore, the SWIPE model, in fact, captures
this local sudden medium convective storm system one hour and twenty-three minutes earlier than
the ground rainfall gauges (or radar). The sub-figures in the last column of Figure 5 exhibit the related
results with the maximum rain rate of 10.8 mm/h at 09:40 UTC. It explicitly shows that the retrieved
SWIPE index was two hours and 40 minutes earlier than the occurrence of the maximum rain rate.Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 21 
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Figure 5. A sudden convective storm case tracked by the SWIPE model at 07:00 UTC on 23 April 2018 in
the Hainan province of China. The sub-figures in the first row represent the results of SWIPE index and
the grayscale 10.4 µm BT image with coast line (yellow solid line). The colorful sub-figures at the second
row represent the 10.4 µm BT images. The sub-figures in the third row are the accumulated precipitation
in the past one hour (mm/h) measured by the ground rainfall gauge stations. The sub-figures in the
first and second columns signify the two contiguous results or scenarios when this convective storm
case in Hainan province is tracked by the SWIPE model at the first time. The sub-figures in the third
and fourth columns represent the results or scenarios with the first rainfall measurement and the
maximum rain rate, respectively.

5.2. Case-2 at 03:40 UTC on 27 July 2018

The NRT SWIPE model successfully captured another medium sudden convective storm case
at 03:40 UTC (Beijing time 11:40) on 27 July 2018 in the Shandong province of China. As a typical
North China Plain area, the average latitude of Shandong province is 35◦N with moist summers
and dry, cold winters (four distinct seasons). The summer precipitation generally contributes more
than 50% of annual precipitation [48]. Since the precipitation area and the Intertropical Convergence
Zone (ITCZ) have moved northward [49], Shandong Province will be frequently subjected to severe
convective storm weather systems in the summer season (June, July, and August) as shown in Figure 1.
The detailed process of this convection is shown in Figure 6.

This convective storm lasted about 2 hours. From the first row of Figure 6, it is found that
the SWIPE model initially successfully captured a newborn sudden convective storm system in the
central part of Shandong at 03:40 UTC. Note that, the continuous records of the 160 ground-based
rainfall gauge data within 1-minute intervals in the Shandong province also clearly reveal that the
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rainfall first occurs at 03:51 UTC at the central part of Shandong Province. The sub-figures at the last
column of Figure 6 exhibit the maximum rain rate of 51.3 mm/h (significantly larger than 16 mm/h)
observed at 04:36 UTC. Therefore, in this case, the SWIPE model can capture sudden convective storm
systems 56 minutes earlier than the occurrence of their maximum rain rate, whereas one hour ahead is
completely adequate [50]. However, unfortunately, the SWIPE model underestimates the rank of this
sudden convective storm system which should be a severe convection sample. This underestimation
is likely to be induced by the relatively high FAR (0.91) of medium case using the Scenario-1 RF
classification model.
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Shandong province of China.

6. Summary

This investigation aims to develop an efficient and robust predictive model called SWIPE for
tracking and identifying sudden local convective storm systems over East Asia using combined AHI
spectral, temporal, spatial information and the NWP based atmospheric environmental information.
Based on an advanced RF learning algorithm, seven months of continuous GPM gridded rain rate data
are used to define the three types of convective storms. H08/AHI and NWP data from April to October
in 2016 are used to make a RF model training dataset. The RF algorithm is chosen because of its merits
on better capturing non-linear patterns between predictors and sudden local convective storm systems.
Before making a training dataset, a classical area-overlapped method is employed to track the potential
convective cloud clusters using three continuous BT images at the 10.4 µm band from AHI. Built on the
conclusions of previous studies, a sample-balance technique is used to randomly reduce the sample
numbers of majority class in the training dataset. This technique can effectively equate the numbers
of minority and majority class samples, and improve the poor performance on predicting both the
minority and majority classes.

Finally, 83 variables in total, including IR window bands and water vapor absorption bands
observations from H08/AHI, and the thermal (K-Index), dynamic (CAPE, CIN, LI, and EBS) and
moisture (TPW) parameters of atmospheric environment from NWP, are chosen as predictors to train
and establish the RF classification model. It is found that some variables from H08 (i.e. water vapor
bands at 6.2 µm, 6.9 µm and 7.3 µm) and NWP data (i.e. TPW and CIN index) show relatively high
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ranks in RF model training. Because of their high dependency on convectively dominated precipitation
areas, it implies the importance of predictors from both H08 and NWP data for training a convective
storm system classification model.

Through parameter tuning iteratively in the RF model, an optimal classification predictive model
is chosen here as final SWIPE for research and applications; which takes into account the needs for
high POD on medium and severe convective storm systems recognition. The final accuracy of the
optimal RF model under Scenario-1 is 0.79 for all the convective storm systems classification. The POD
of the optimal RF model for severe and medium convections can also reach 0.66 and 0.70, respectively.

The use of NWP variables can noticeably improve the prediction of convective storms, especially
for medium cases. Therefore, combined satellite and NWP data are important for the effective
applications of this RF algorithm based SWIPE model. Two typical sudden local convective storm
cases in Hainan and Shandong provinces of China in 2018 are studied for demonstration of SWIPE
applications. These two cases are successfully tracked and captured by the SWIPE algorithm 2 hours
and 40 minutes and 56 minutes earlier than the heavy rainfall event starting, respectively.

In the future, NWP data with a higher spatial resolution will be used to further improve the SWIPE
prediction model. Also, some predictors for training SWIPE model need to be adjusted. While usually
ground based radar observations provide critical information on storm development after it is initiated,
in this study, the ground based radar observations are not used because the focus here is on the local
convective storm identification in the pre-convection environment. The option to use ground-based
radar observations will also be included in the model in the future. For example, the radar observations
can be either used to define the convective categories instead of using GPM, or used as additional
predictors in the RF model.
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Appendix A

Random Forest, an advanced ML algorithm, is a combination of tree predictors, which were first
proposed by Breiman [39]. The RF algorithm will not over fit based on the use of the law of large
numbers. The final accuracies of RF classification prediction can be well ensured by using the injected
randomness, which are derived using a forest of trees. Generally, one of the biggest advantages of RF
algorithm is for capturing non-linear association patterns between predictor and predictand, such as
convective storm system or precipitation [40]. Bagging, the basis of the RF, is a representative of parallel
integrated learning. This Bagging algorithm uses a self-service sampling method, which randomly
takes a sample into the dataset, and then puts the sample back into the initial dataset so that the
sample may still be selected at the next sampling. The bootstrap re-sampling method is also used in
the RF algorithm to extract a sample subset from the original dataset. Afterwards, a decision tree is
constructed or grown using each sample subset. Then, the prediction results from multiple decision

ftp.ptree.jaxa.jp
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3
ftp://nomads.ncdc.noaa.gov/GFS/Grid4
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http://scikit-learn.org
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trees are merged and averaged, and the final predictions are obtained through voting [39]. Unlike the
previous study, this investigation introduces the RF algorithm into the prediction of convective systems.

Changes in the following three parameters are the key that optimize the final RF prediction model.
(1) n_estimators – The maximum number of trees in the forest. Typically the more trees you have the
better the accuracy. However, the improvement in accuracy generally diminishes asymptotically past
a certain number of trees. Also keep in mind, the number of trees increases the prediction time linearly.
(2) max_depth – the depth of the tree. A low value will likely underfit and conversely a high value
will likely overfit. The optimal value can be obtained using cross validation or other suitable methods.
(3) max_features– The size of the randomly selected subset of features at each tree node and that are
used to find the best split(s).

Note that, while training or making a robust random forests model, not all of the predictors will
appear in the collected samples to participate in decision tree training. The remaining approximately
one-third of the predictors are not included in the ML sample during the tree growing, and can be used
to test it as an out-of-box (OOB) sample. The OOB sample is always used to get unbiased estimates of
RF model error (OOB error) and to get estimates of the importance score (IS) of the predictors used for
constructing the tree. Theoretically, random forest equation can be numerically expressed as follows:

{h(X, θx), k = 1, 2 . . . , K} (A1)

where X is the characteristic variable or predictor, θ is the sequence of random variables, k is the total
number of decision trees included in the random forest. The original sample can be written as:

{xi,yi, xi,εX, yi,εY, i = 1, 2 . . . , N}, (A2)

where Y is the classification of the target, and i is the sample size. The OOB error of RF can be derived
from the classification strength of s, which is written as follows:

s = Exy(Pθ(h(X, θ) = Y)−maxj 6=YPθ(h(X, θ) = j)) (A3)

where P is the generalization error of RF model. E represents the expectation of random forests for
each sample classification result, and j is the different categories of samples. OOB estimates are the
same as those estimated using test sets of the same size as the training set.

Thereby, normally, these two parameters are used to evaluate the performance of the RF model as
well [39]. In this investigation, we use the freely released scikit-learn toolkit as a well-known Python
module for ML to implement RF training and predicting (http://scikit-learn.org/stable/).
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